Quaternions and Biquaternions: Algebra, Geometry and Physical Theories
نویسنده
چکیده
The review of modern study of algebraic, geometric and differential properties of quaternionic (Q) numbers with their applications. Traditional and ”tensor” formulation of Q-units with their possible representations are discussed and groups of Q-units transformations leaving Q-multiplication rule form-invariant are determined. A series of mathematical and physical applications is offered, among them use of Q-triads as a moveable frame, analysis of Q-spaces families, Q-formulation of Newtonian mechanics in arbitrary rotating frames, and realization of a Q-Relativity model comprising all effects of Special Relativity and admitting description of kinematics of non-inertial motion. A list of ”Quaternionic Coincidences” is presented revealing surprising interconnection between basic relations of some physical theories and Q-numbers mathematics.
منابع مشابه
A brief introduction to quaternion matrices and linear algebra and on bounded groups of quaternion matrices
The division algebra of real quaternions, as the only noncommutative normed division real algebra up to isomorphism of normed algebras, is of great importance. In this note, first we present a brief introduction to quaternion matrices and quaternion linear algebra. This, among other things, will help us present the counterpart of a theorem of Herman Auerbach in the setting of quaternions. More ...
متن کاملFast and accurate normalization of vectors and quaternions
We present fast and accurate ways to normalize two and three dimensional vectors and quaternions and compute their length. Our approach is an adaptation of ideas used in the linear algebra library LAPACK, and we believe that the computational geometry and computer aided design communities are not aware of the possibility of speeding up these fundamental operations in the robust way proposed here.
متن کامل. R A ] 1 0 Ju n 20 05 Biquaternion ( complexified quaternion ) roots of - 1 Stephen
The roots of -1 in the set of biquaternions (quaternions with complex components, or complex numbers with quaternion real and imaginary parts) are studied and it is shown that there is an infinite number of non-trivial complexified quaternion roots (and two degenerate solutions which are the complex imaginary operator and the set of unit pure real quaternions). The non-trivial roots are shown t...
متن کاملGeometric Algebra - The mathematical language for Computational Engineering?
This work reviews some current engineering applications of geometric algebra and observes the potential of this mathematical language to become a basis for a wide range of computational engineering applications. Geometric algebra unifies many other mathematical concepts like quaternions and projective geometry and is able to easily deal with geometric objects, operations and transformations. Fo...
متن کامل